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SUMMARY

The purpose of the reported research is to study the

dynamics and control of a class of large antenna/reflector

systems in orbit which are also partially stabilized using a

tether-connected subsatellite. The initial focus has been

in the development of the system's equations of motion

linearized about the equilibrium position where the

reflector's (shell's) symmetry axis nominally follows the

local vertical. The shell roll, yaw, tether out-of-plane

swing motion and out-of-plane elastic vibrations are

decoupled from the shell and tether in-plane pitch motions

and in-plane elastic vibrations. It is proved that the in-

plane motion of the system could be asymptotically stable

based on Rupp's tether tension control law based only on

length and length rate information. However, the transient

responses can be improved significantly (especially for

damping of the tether and shell pitch motion) by using an

optimal tension feedback control law. When tether

flexibility is included tension control law gains must be

carefully selected in order to preserve stability. System

transient responses could be further improved by including

the state feedback of the tether vibrational modes into the For

optimal tension control law.
-)d 0
ton

In order to prepare for an extension of this study to

simu.ate the deployment or retrieval dynamics, a literature 'On/

iy Codcs
survey including a brief comparison of control laws proposed ana/or-
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by different investigators has been completed. Recommen-

dations are made concerning the suitability of the various

control laws for use with the orbiting tethered reflector

system.

Finally a preliminary model of the nonlinear dynamics of the

tethered antenna/reflector system in orbit has been obtained

based on Lagrangian techniques. It is seen that, unlike the

situation for the system linearized about the nominal

stationkeeping motion, the in-plane and out-of-plane motions

are coupled through second order, and nonlinear coupling

terms also depend on tether line swing motions and tether

vibrations. For this preliminary model the shell is

considered to be a rigid structure.
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1. INTRODUCTION

1.1 Feasibility of Concept based on Existing Work

Since the early 1970's a number of very large space antennas

have been proposed for power transmission, astronomical

research and communications. The gravity stabilized

configuration is particularly suited for a very large

flexible structure to alleviate the problems associated with

the active attitude control of very large structures. The

structural feasibility of a very large Earth oriented

antenna, where the flexible reflector contour is maintained

by adjusting the length of connecting tethers between the

reflector and feed panels, has been discussed.[11  In this

paper the stress analysis of the tethered antenna Was given.

The analysis of the dynamics and control of the orbiting

flexible shallow spherical shell and various tether

connected systems in space have been performed. Bainum and

Kumar[2 ] have investigated the dynamics of an orbiting

flexible shallow spherical shell with a dumbell connected to

the shell at its apex by a spring-loaded double-gimball

joint to provide the favorable composite moment of inertia

distribution. Also, Bainum and Reddy[3] have investigated

the shape and orientation control of this shell antenna by

including some additional active control elements.

Numerical resuits verify that a significant savings in fuel

Consumption can be realized by using the hybrid shell-

dumbell system together with the (active) point actuators.

1



The purpose of the proposed research is to study the

dynamics and control of a class of large antenna/reflector

orbiting structures which include an articulated tether

connected supporting structure to provide the favorable

moment of inertia distribution for over-all gravitational

stabilization together with some active actuators. There

are two possible proposed subsystems which could provide the

connection between the tether and the shell reflector; one

involves a spring-loaded doubled-gimballed joint connected

to the shell's apex and through which the tether is

deployed/retrieved (Fig. 1); the second contains a joint at

the end of a rigid boom which is attached to the shell's

apex (Fig. 2). Through the end joint the tether would be

deployed or retrieved. The tether tension could be used for

producing restoring torques on the shell, with natural

damping provided in the joint assembly. For the first phase

of the study reported here the second subsystem has been

taken as the basis for the system model due to the

relatively simpler implementation as compared with the

double-gimballed joint in the first subsystem.

1.2 Relevance to SDI

Associated with the capability to orient a large flexible

antenna/reflector type of device accurately while at the

same time maintain the surface shape tc within centimeters

or even millimeters are many applicatlons in both the

military and ::vilian fields. For example, high energy

2



counterweight

- juint and tether mechanism

counter weight

Fig. 1. Subsystem A -Tether Deployed from Apex of Reflector

.. rigid boom

joint and tether mechanism

counter weight

Fig. 2. Subsystem B - Tether Deployed from the End of a
Rigid Boom Connected to the Reflector

3



beams can be generated by a power source and reflected from

specific known points on the reflector surface to

preselected targets. In the very important communications

field, such an antenna surface can receive multibeam

communication waves from electronic feed devices and

transmit these to a variety of small mobile receivers to

comprise strategic communication links during early,

critical phases of an attack when larger, fixed land-based

antennas would be far more vulnerable to observation/damage.

Such devices could also be employed to transmit coded

electronic mail rapidly over different communication

channels.

1.3 Outline of the Research Reported

The second chapter focuses on the development of the linear

system equations of motion for an orbiting tethered shallow

spherical shell system where the shell's axis of symmetry

nominally follows the local vertical. The Newton-Euler

method for a continuous system is adopted here. The second

objective is to develop the in-plane and out-of-plane

stability conditions and introduce some tension control laws

for in-plane motion control. The transient responses will

be compared for three different tension control laws during

typical station keeping operations. A paper based on these

tasks was presented at the Third International Conference on

Tethers in Space, San Francisco, Masy 17-19, 1989 and has

4



been accepted in slightly revised format for publication in

The .. Q.urnal ot.. e.Astr~n~au a..ees....

The following chapter describes a comprehensive review of

the steps in the development of control laws for Shuttle or

platform connected tethered subsatellite systems.

Deployment, stationkeeping, and retrieval control strategies

are reviewed and compared. Finally, recommendations are made

suggesting the relative suitability of the different control

laws for adaptation with the proposed orbiting tethered

reflector systems.

Chapter Four concentrates on the development of the

nonlinear equations of motion for the tethered reflector

system in orbit in a form suitable for simulasting

deployment and/or retrieval maneuvers based on some of the

control laws described in Chapter Three.

Finally, Chapter Five summarizes some concluding statements

and follow-on plans for the continuation of this general

area of research.

5



2 DYNAMICS AND CONTROL OF A TETHERED ANTENNA/REFLECTOR

IN ORBIT

2.1 Introduction

Since the early 1970's a number of very large space antennas have been

proposed for power transmission, astronomical rcscarch and communications." ' The

gravity stabilized configuration is particularly suited For very large flexible systems

to alleviate the problems associated with the active attitude control of very large

structures. Bainum and Kumar"' have investigated ile dynamics of an orbiting

flexible shallow spherical shell with a dumbbell connccted to the shell at its apex

to provide the favorable composite moment of inertia distribution. Also, Bainum and

Reddy" 's have investigated the shape and orientation control of this shell antenna

by including some additional active control elements. Meanwhile, scores of

applications of tethers in space have been proposed and analyzed including some

space platform-based applications of the tether suhsatellitc system.t4
1-

'
51

The objective of the present paper is, First, to develop a system mathematical

model of a class of large anten.ia/rcflector orbiting s ructurcs which include an

articulated tether-connected suppcrting structure to provide the favorable moment

of inertia distribution for over-all gravitational stabilization, togcthcr with some

active actuators. The tethcr would be conncectcd ;it 1he Cnd of a rigid boom which

is attached to the shell's apex and through the cnd or the boom the tether could

be deployed or retrieved (Fig. 3). The tether tension coUld be used for producing

restoring torques on the shell. The second objective is io develop the in-plane and

out-of-plane stability conditions and introduce some iCeion control laws for in-plane

6



motion control. The transient responses for the three different tension control laws

will be compared during typical station keeping operations.

2.2 Equations of Motion

For system modelling the following assumptions were made:

1) The thickness of the shell is small as compared to the height of the shell,

and the ratio of the height to the base radius is much less than unity ( condition

for shallowness ).

2) The elastic deformations perpendicular to the symmetry axis( i.e.,x axis ) of

the shell are negligible compared with the deformations parallel to the symmetry

axis, i.e., only transverse vibrations are considered.

3) The symmetry axis of the shell is nominally along the local vertical.

4) The center of mass of the system is moving in a) circular orbiL.

5) The flexibility of the boom is neglected.

6) The subsatellite is to be considered as a point mass.

The shift of the center of mass of the system will he considered. In order to

develop a general model for the tethered shell ;yqtcm it is assumed that the

massive, flexible tether is deploying or retrieving ,i mhu itellite at a distance, , from

a point on the shell which is offset by distance h. h,,. h,. along the yaw, pitch,

and roll axes, respectively, from the center of mass of the ;hell. 0,.

7



Santini , Bainum and Kumar"' have developed a mathematical formulation for

a general orbiting flexible body based on the Newton-Euler method and continuum

approach. In the present paper this method will be extended to the system

composed of two flexible structures ( the shell and the tethered subsatellite ).

The coordinate systems used in the development of the system equations of

motion are shown in Fig. 4. OXY.Zo is an orbit-fixed reference frame centered at

the center of the mass of the shell, 0,, with O,Xo along the local vertical and O.Y,

along the orbit normal opposite to the angular velocity vector. OX,Y.Z, is an

undeformed shell reference frame, R., where OX,, OY,. OZ. are the principal axes

of the shell. OXYZ is the subsatellite-undeformed tcthcr r-eference frame. R,, with

OX along the undeformed tether line, where 0 is the point from which the tether

is deploying or retrieving. The coordinates of 0 in the shell frame, R., are h,, h,,

h2t.

The angles O , a . ¢ are the yaw. pitch ind roll angles of the shell.

respectively. An Euler angle rotation sequence of: ( I ) (2) e , and (3) 0 is

assumed from thc OX°YZo system to the O,X.YoZ° ,vtcm.

The transformations from O,XYoZo to O,XYZ, ind from O,X.Y.Z. to OXYZ

are assumed to be given by

X. ] tca socp -bssls sosfw--tsc*

.y -=-s oce ,c',-soseslp '+sa,- ' (1)

Z .s - s z. '

8



[X Y Z ] T ( y) X. Y. Z, ]

where

T(a,y) - c' -sa y (2)

=Sa 0 --ca

where c * cosine (). s -sine ( )

Consider an elemental mass, din, whose instancous position vector from the

center of the shell, 0,, is r (Fig.4). The equation of motion for dm can be written

as[71.181

adm = L(q) +fdm + c dm (3)

where a inertial acceleration of dm

q = elastic displacement vector of dm

L(q)- elastic forces acting on dm

f - gravitational force pcr unit mass

e - external forces acting per unit mzis,

The gravity force in the shell frame, R., is givcn hv: "'"'

T -+ (4)

where f is the gravity force at 0. exprcsscd in the C'rnme. R.. and

3 2c 2 - -3socic" 3c c9se
X W "3sbc:: 2 .3  3s2.'c."2:-1 -3stcese (5)

3c' Sece -3socisa 3s2.1-1

where is .he ,rbital an2ular ,Cei:citv.

9



The vector equation, (3), can bc written in the frame, R,, as

CE-a 0 +r +r ()~?~ dm-L(q)-dm - 0 (6)

where r, r are the velocity and acceleration of dm. respectively, as seen from

the frame, R., and " is the angular velocity of the frame R,.

W' - Ce -s+ ce-Wj ( cOIP-sosew S) (7)

W z + SO 4-WC COs

It is well known that for some applications, for example, for the tethered Shuttle

subsatellite system, the mass of the Shuttle is much greater than that of the

tethered subsatellite, so the center of mass of the Shuttle can be considered to be

the mass center of the whole system and the shift of the center of mass of the

system can be neglected i.e. a,-f.-0 in equation (6). However, in our system the

shift of the center of mass of the system will be considered and, in general,

a,-fo 0 ; it will be calculated in the development.

After projecting equation (6) on the tether frame. R,. the Following is obtained

(a 0'f ) +T TV+2w~xr wr-ix (r) -m~1 dm-L. (qC -eI tdM0 (8)

where , indicates the projection onto the frame. R..

The expression of the r of the tether sytcm iq diffcernt from that of the shell

due to relative motion of the tether, so we con;ider the tethered subsatellite system

and the shell, separately.

Tethered subsatellite system

r = T-' r, + h 4- q (9)

10



where r - ( x+u,v,w) (10)'

is the position vector of dm from 0 projected onto the frame, R,, u represents the

tether's longitudinal elastic displacement. v, w represent the displacements in the

orthogonai directions transverse to the OX axis.

h = ( h., h., h) is the position vector of point 0 from the shell's center of

mass, 0,.

q,-(u,., 0, 0) is the shell's elastic displacement vector of the apex of the shell

(according to the assumptions there is only elastic displacement along the X. axis).

Hence, r (T") r, + q- + (T-')r. (I1)

r (T') r, + 2(') r, +-(T ") r. +- ch (12)

Let 0 -W z W

CW] =  Wz 0 -,UXI (13)
--W Y 0

According to vector algebra

Wxr+x(Wx')-Mr- EQ.

where

IQ] - + (14)

After substitution nf equations (!!)-(04) ilT() c(Iuatin (,) there results

L a, f - a.j dm Lf). - 1.m -, I-

where a. = r. + Tq0 + 2[T(T') - T[ ]T' ," 2T ]q0 +

[T2T) - 2T[ Y;(T") TrQIT"-1  , 1rO] -16 f)

In r crW r to orm ", e sIInC , n r 1' 11 r; '' 1" ul at.ion (16) :s

.inearized as :oilowv:

11



a (a, pa )K y z 7

2

aCx/W'- .-+U"-u P "-3u+3u PO-2w'+(2a'+2e '-3) x

C P z
a ~2i (-21 ' ) - (2u' -,e"3.+) K(e )

a ya" /W 2 ="+2(Z'- u')-2u (L"@+60 C~

zC0
+( O"+3a 38 )h x+( 20' - +k) hy-Z 'h hz  (18)

where ( )' d( )/dr and T = wC t, 2. is the length of the tether

Shell system

Now consider equation (8) for the shell system

r =,+q, =( ,+u, y, z, ) (19)

r - (u,, 0, 0) ;r. =(u,, 0, 0) (20)

where x,, y., z, are the coordinates of dm of the ;hcll in the frame, R..

After substitution of equation (20) into equation (8) there results

((ao. 0) + a. ] dm- T L(q,)- e Idm = 0 (21)

where a, =(3u, - u,, 0, -2u,']" + T [Q][x., y.. z, ] (22)

Equation (15) is integrated over the tethered susgatellite and equation (21)

is integrated over the shell. The two results are ad'ded rogether and it is obtained

that

(a , )K -(lm) [ E - /a. dm / a, ,Im i (23)
p

where m, = m, -I- M, + m, E - j e (I m

and m,. m.. m, are the mass o" J.he suhvrerc '1'1'rc' , .hcfl. respctively. Thc

subscriot ,.t or p designates he intcgra'in M\c! n,: .2lc~Iite and, tether or the

12



shell, respectively.

To obtain the Rayleigh-Ritz solution, u, v. w can he expanded in series form

in terms of a set of admissible functions'

u E ' ( x)AafC); v Z 0 ,(x)B,(t)

(0 (x)C (t); L(q) [L(u),L(v),L(w)]T (24)

Introduce
s' : '~ ;'= s.c '~~ ~

nnc a'P

R s. x2dm Hpdm; ,. = lH fP 'Pdm (25)

Hence
; udm IA ; f 'dm = Z1, A'

I u="= Z1 .A" ; v d= - Z I BM etcfS M A"; M dmu M ' (26)
m. s.c

Mathematical expressions for the natural frequencies and mode shapes of the

transverse vibrations of a shallow spherical ;hell with i completely free edge have

been obtained in Rcf.[9].

P An P.() (27)

where ?n is the nth mode shape function
#Pta ~ ~ ' ?1k'' k) + DJkk\ k)] s(+O) 28

a is the base radius of the ;hefl

Since J dm 0 hcncc

Udm = '" uu m , (29)
.2P

It :s expected that :,c -atural "rcqucncie :n,; ., ": IA will !,c modified

v :he, prescnce o(f the tether wtrcrn. Ho,. cr. ', "cr ,.e rii adopt. D

13



as the assumed shape functions, since the tether ;v-tcm mass is much less than

that of the shell.

Equations (23) , (18) , (22) , (26) , (129) are ;uhstituted into equation (15)

and the resulting vector equation is projected along Lhe X, Y, Z axes. After

integrating the projection along the X axis over the <uLhatellite and the tether the

translational equation for the tether motion can be ohtained

2r (Z "+3u )"I- "(A"-3A"- " ' III '  - < a' 2 '-3)Zi

C' tt PO+lM S t (3-Z9 ')h X + ( "4-2 '-401+y)hy+(0 ..e,)h h zJ}  St Mr -- 0 ( 0)

where s M +M ; - /M /M

* (31)

E,, , E.. are components of E,,, E. along the X .xi,

T.= e dm ; E, = I c dm (32)

and F',, is the tether tension

The equations for the rotational motion oF ric tethered iubatellite can be

obtained by ',he following operation

rx equation (15) = 0 (33)

By projecting equation (33) along the Y nd Z :axe,, rcspectively, the rotational

equations for the pitch( in-plane swing ) ind nill mii-,-piFlc ,winR ) motions are

obtained as

"' -c--:G' -h )c -2 (Z*<?U, - ) -2::* A, + a

-"a+3 e ) ( (* -h 2 - (34):c . X - "

S2 ('35)

:cc- : ), - -. .

14



where /{ Mt /m

-* M H r /M H 12 /M (36)

L,, L,,are components of the torque L,, produced by the external force

By the following operations,

I . Eq. (15) J"S 0 (37n); s{t Oa C.q. (15) ]7 0 (39n)

1 0 [Eq. (15) ]1- 0 (39n)
S.C

the nth longitudinal and vibrational mode equations irI, obtained as

T* (9."-u" +3u )+ Z ! * (A-3A)-2 1r* C' (2a'+20 1-3) ir
n PO PO m rI Mm M m M p

+T C(3-20')h +("+2-4,0'y)h +( "-3e) h J+ z. A - (40n)
1P n z Mmn M ex

."T ;4 4-.'

n m M M

1* CQ(It.4403-y)h +h -(lp"+dP)h ]+HI W 3 n (41 n)
X 7nz m a a r 2 (n) (4in)I

Eli 2 (-u )ZH A' -H* (aL",4"+3a+3e)

1* [C(a"-3a+3e)h ( -20,"-.Hp - -29'h ]+2H(-(".-SY z n z
where a x n

*':'*p t : tan 
(3

W2 C result from the elastic force'"

The equations of shel motion

By the following operation

Sr, equation (6) = 0

--e Cc uations O l me C0rAL Onai .rotion o(i"' :T: Il- i-.'incd as ( owe: c in

S c-,:cuation (6) includes he :etner Corce ;ictn1 (in .ic ic dl wvhich can be obtained
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by integrating equation I ) and it represents the effect of the motion of the

tethered subsatellite system on the shell).

(M*h h/W -hylCI*a81+(1 -h ( +ex'×; x x {st ' z Cx 1 x st) 0 ' e

Era* (z'-u -h eI)-ZI. A, -T* C"+h [I*(" y)
St PO z M M I m z

x x St Mp ep M

31-n92I ae l =(l/J*){Jh h* l~ +h I= (V2-u" +3u)
Y n 7 z st x x C Z St P P

+E* (A-A)2 *a+6)z1(Mh M* 0-,2 )]hC co

42m* (ZV-u' 1+21I* A' -r epy)/ 2  (45)St m m x Y '( -a C

,a h -31 ) /i -hC('') )e.-m*c ('i"-,)h
z St X x St z

)]-h Cm' * (Z"-,.i' 4-3u ) +,7 (1 c'+(I*-m* h )e'-zi. C1)

n y[ St P 0  0 x t sx

+M (36-0")h +Z, (A'-3A )]+(Tr +L )/ ,j 
2 } (46)

St _.Pz epz C

where a (J*J*)/J* *. ** * * *
x y x X z 7 .

2+ 2 +M (h 2 +h 2 )-1 h
,"~~+ . ,(hx+h~y-~ J7 ( -) p/t7 z y 7
M " dm ; A/a (47)

z P P n P a P

L:. L ,, L , are the comporents of" torque, produced bv E,, and E,, which

appear in the tether force acting on the shcfl: _.r... ..%. L are components of

torque which are contributed by the cxternal f orcc , or the shell: and J, J ,

.f, are the principal moments ot inertia ,or W c ,rnd!ctrncd hetl.

By the following operation

% equation (6) . (48)

'he nth shell elastic '. 1*r.tionai mo c ,...in tori . ,,,. ''

' ,, (4 9 n)
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where E. is the modal component of the- external force. 41 are at the pointO,

N1. is the nth modal mass, F.. is the component of the tether force acting on the

shell along the X. axis,.Q ,.uv /cWwhere u, is the naturnl frequency of the nth mode.

Equations (30) - (34) , (35) . (40n) .(41n) , (42n) , (44) , (45) , and (46),

(49n) compose the complete system equations of motion.

Now, for our special case (Fig.3).O is along the shell yaw (i.e., X.) axis, hence,

h,=h.-O and it is assumed that there are no external forces acting on the system.

By examination of the equations for this special case the following conclusions can

be reached: (1) the shell roll, yaw motion, tether our-of-p1ane swing motion and

elastic vibrations are decoupled from the shell pitch motion, shell elastic vibration.

tether in-plane swing motion and in-plane elastic vibrntions: (2) the shell pitch and

elastic motions are coupled directly to each other through their rates; (3) since

1,1"' -0 for all shell elastic modes except for the axivmmetric modes, only the

axisymmetric modes are coupled to the shell pitch morion: nonaxisymmetric modes

are independent of the system motions, and would have ro be controlled separately

within the linear range.

2.3 Stability Analysis

It ;s well known that che sheil pitch and ml-vnv -notions are unstable about

the present nominal orientation as J., >.J,. J. --J, vithout ;hc attached tether system.

In the oresent paper qtability conditions F'r hc ,crcd shc!l svytem will be

Ue,.eioredi ".ven onl'; "e;e' erc ,ii>...: is .2or,- R"cr,.u- ', . ... Si,~ :, ,,¢dcred d2:U>,

In zenerai. a :nite number or -! aszc mokics in " ,:c : : -o 'e retained Cor

17



practical purposes (truncated model). In the present papcr a few such truncated

modes are considered.

Rigid, constant length tether for in-plane motion

In this case all of the tether elastic modes arc ncp!cctcd and the tether length

is fixed (without tension control). Hence, according to cquations (34), (45) for

our special case the equations of in-plane motion arc ,implifled as follows:

K..'+6 "+3a+36 - 0 K 3jf*-3"-3n * 9 0 (50)
Y

where H /(H-*.); :<2 = *h /J* (51)

* * Z
"y J - h .x x (

The system characteristic equation is given by
~- a

Y (53)
2y

since K-- J +hx/ (:2M -x (54)
. C P S :cc X .

if h, < 0 then K,- K, > 0

The neutral stability conditions are

; < 0 (55): 1.I 2 >  (56)

and ,(:*. -( K. .' > 0 (57)

It can be proved that if condition (55) ! <flri, .. ten (56),(57) arc also

.atisti-ed.

Meanwhile, if h, > 0 the neutral stabilitv cmt1d 1,,n< :lre

K, - K > 0 and *.58

2 <(58) Ilmost n d

.S i ,etcr o *2heo e . , . o ",rld'ti ns or )n--ianc
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motion are

h. < 0 or h=-h, > 0

J-J + m,,h + 1 h =J,-J. +[(m, + m)h '+ (m,-+- m.. 2)h ] m,,'m > 0 (59)

Rigid, constant length tether for out-of-plane motion

According to equations (35) , (46) and (44) the equations for the rigid,

constant length tether for out-of-plane motion are qimplified as follows:
KIY"of.(0 "+(3- l)y-44 - 0

K y "-@-t..O 3K y-4.92*€-(i-42*)4 ' 0
(b 0

(60)

where < - Jy'J +(mshz -  ,Ih p3 x z z Yx S X. x z

C4 (J Ia* - (J -j ) /J (61)x z Y x Y y x x
The system characteristic equation is givcn by

6 (62)
a0 % +a zx +a4 a (2

where a0 - 3

2 x Z

a = -4Q2 E (3",)Q*-K3j (63)

the neutral stability condition for this ,vqtcm is

A2 < 0 (64)

i.e., Z is a negative real number.

Sincc i, > 0. condition (64) '5 CuUiltcd , , ',',W tditnns

a.,>O (65) ; aa,-a, a5. >J (V) ; a(6 (;,
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and a 2 4Laz+18 a a a -4& a3 _Z7aZaZ--4a a3>0 (68)
2 4 0 2 04 06 62

The conditions (65)-(67) are the Routh-Hurwitz conditions resulting from the

cubic equation in the variable x2 [equation (62) ] and condition (68) is from the

condition that this cubic equation has three real roots.

It is known"' that one of the necessary and sufficient stability conditions for

out-of-plane motion of the shell system without the attached tether system is

- ( 0JY)/Jx (69)

Now we assume condition (69) is still satisfied, -o from condition (67) it is

obtained that

.' > tc (70)

If the condition (70) is satisfied, it can be proven that rhe conditions (65) and

(66) are also satisfied and it is demonstrated numericallv that condition (68) is

also satisfied for a variety of system parameters.

Hence, the neutral stability conditions for our.-ot-prlne motion arc
>0 (71) " K3/(K .3) (72)

The neutral stability conditions for a rigid. cnnstant length tetAer are conditions

(71) . and (72) together with condition (59)

Typical stability regions for in-piane and Mut-ot'-r:inc motion in the parameter

space m,. h are shown in Fig..5: it is , c : th:IT rhi, ,< :ihilitv rcion for in-plane

motion is larger than that for the out-of-planc mnOtij()n.

IV can be proven chat .he out-,(-nlanc mmon -611 i ,vm ) totIcallv qtable when

,a rnn n z ,,c shc1 roil :tn. :.c :s c. cd kUc,'a..,........c coJditions (71) anti
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Rigid variable length tether with Rupp's tension control law for in-plane motion

According to equations (3o (34) . (45) the equations of motion with tension

control are simplified as

e" 2Ka'+(K+ 3x ) 28'-3Kz- F /ZI *z+3(K+S ifx x ¢ c:S "- K x '

Kl"+e "+3a+3e-K 4 E 0

5 (73)

where 3.C hlZ; e - (ZlZ )-I ; K (M +. /2)/(m -)

K4  21 *Z/(H *+hI* K -2m* ht/j * (74)
4 X XX XSt:

For Rupp's tension control law""1

= -(K ._ ,c- ') (75)

the system characteristic equation is developed andl the Routh-Hurwitz criteria

applied. After some complicated algebraic manipulations the following expressions

for the principal minors are obtained

0. (KI1-K2 ) K.,

02  K. )K, ,C(K-K )  .K+2K C K - .K.K) +2( (K K, -K ) K) ]

2 1 ~ 2 42 i 4 25 4
D3 2

0k -9(K<-): '~ 1* +B€'
3_ZK2, (* 2 *+C*)K-* +-(8K(1-'KC ),/K 5) C(~K Z-,-5

-(,%5 /KC,) (K 5 K .-K4+K ,-K 5 )1
21

0, -6 821 , - K -K (5 -- K <"" 5 "3 I 2: 5l

(76)

where " : -. .

*. .= . --.- 2
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B* 8M- I M (M /4)j 1t*/[3m (11* 1 .jlh)21*2

41 4tZK(J +M h2 ) j2/ C(' * +hI (77)
St 7 Y(77)x yst. y .cc x y

The necessary and sufficient stability conditions are

D, > 0 ( i=1, . ..... 6 ) (78)

Since h > 0 ( or h. < 0 ) according to equations (54) and (51

K,- K2 > 0, K, < I

Hence, from D, > 0, Ds > 0, and D, > 0. there results.

> 0, K > 0 and 2* <0 (79)

Meanwhile, since

KS:KI-K Z - 3 ( ; / I +h:*)JO > 0

: y y )

<S1K4~ 2hM ~ ~(/4)/H +3hI4.Z*J*4> c
1 -i 4 a 22.m t(M~4 3 4 / 3~ 4hiMri J 6

and 3*2 - A~c* < 0

thus, if K_,> 0, iK*> 0, a* 0,

then D, > 0 ( i 1,.. .... 6)

So the necessary and sufficient conditions for in-plane motion szability with

Rupps tension control law are:

I* < 0; 0.i) 0 and K* > 0

Stability conditions for flexible tether

When tether flexibilitv is considered it is difFcut to klet inalvtical results for the

p,:.C. iitVc :onci ns ;,ecau5c o tIc hi h ordcr ! t. ii. rvevr. it is L"Ound

.u,-er'icailv ,iiar. the wtem stamirv condit(nT 'IFC -. n, oth for in-plane
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motion ( with constant length tether or with Rupp's tension control law ) and out-

of-plane motion ( with constant length tether ) when the tether flexible modes are

included in the system model, for a variety of system parameters ( for example, for

variations of ht, in,, and Z ).

2.4 Optimal Tension Control Law for In-Plane Motion during Stationkeeping

In the last section it has been demonstrated that the system is asymptotically

stable with Rupp's tension control law for in-plane motion. However, in order to

improve the transient responses two alternate optimal control laws are introduced.

One is an optimal control law based on tether length. in-plane swing angle and

shell pitch angle and their rates for the rigid massive tether model; another is an

optimal control law, which includes additional feedback of the tether vibrational

modes and their rates. For the system with the ,tatc variabic format equations the

optimal control. U, which minimizes the performnance Index

J (X T QX + URU )dt
0

is given by U =- (R-'Brp K

where X is the state variable

Q is a positive semi-definite state pcnnalt mrnrx

R. is a positive deflnite control nenaltv mntrIx -,n

P is the positive definite solution to thc qtcndv- ;tntc Ric-cati matrix equation

-PA - .-VP - PBR'-B1 P-0

T',,, ortirnai controi 1XVv. ., c 01 nC Or ih c 0:c 1:.111. '2-P'1NM1 a~jl nszie. and

isneil )itc,- anv:e and their ratcs :or "lie r:c nr cvistate variables
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X I = (I) takes the form:

A~f -~ ,a'-K~ ~ '-iletc)

For the system parameters: rn, = I10000kg. mn, = W0k2. =I km, m, 8. 35kg,

h =0.08kmn some typical system simulation ( three vibrational modes are included)

results show that the transient responses for the rigid tether optimal control law is

better than that for Rupp's tension control law for qome of the control gains,

especially for the damping of the tether and shell pitch angles. But it is also found

that the system could be unstable for some of control gains ( Table 1).

It is obvious that the transient responses, when the optimal control law includes

Feedback of the vibrational modes. are better thnn rhc responses based on the

previous control law. The improvement is cspecially noreci in the damping of the

tether vibrational modes. A typical comparison of transient responses for the three

different tension control laws is shown in Figs. 6a. 6b. and 6c.

2.5 Conclusions

The orbiting shallow spherical shell pitch andl rll-v,-iw motion are unstahie when

the symmetry axis nominally follows the local \cr~lil. Howve,,er. it is suggaested that

aravitational stabilization could be achieved h :- finciin2 a *tethered subsatellite

;vst.rn ~o orovide the Favorable moment or Cri dli ,rriluion. 71e tethcr could be

connected at the enic of a riagid boom which ;1- :ittichcd ~o 'he -;hell's apex. The

euations of -,orion -,or suci a ~2ad;hPilow Rn'w ;,h1cll in or,it wit th

-r-?sen, ~rrron -i- 2:!'rc: '~

c;neil mil-vaw motion01. ::r u-.-' , r' m0r'O i ' anu ie "ether out-



of-plane elastic vibrations are decoupled from the shell pitch, shell elastic vibration,

tether in-plane swing motion and tether in-plane elastic vibrations. For given shell

and tethered subsatellite system parameters a suitable rigid boom length could be

chosen in order to provide a gravitational stable structure both for in-plane and

out-of-plane motion. The in-plane motion of the system could be asymptotically

stable with Rupp's tension control law. It is demonstrated numerically that the

flexibility of the tether would not affect the stability conditions for the constant

length tether or for the variable length tether with Rupp's tension control law for

a variety of system parameters. The transient responses can be improved

significantly, especially for the damping of the tether and shell pitch motion, by an

optimal control law for the variable length tether model. It is also seen that the

system could be unstable when the effect of tether flexibility is included if the

control gains are not chosen carefully. The transient responses can be further

improved by including the state feedback of the tether vibrational modes into the

optimal control law, especially for the damping of the tether vibrations.

Extensions to the present paper could consider the effect of the shell flexibilit7,

on the system stability and control and some kind (if active control could be

introduced (in addition to tether tension control to improve system performance.

Additional control will be required to :rn,ide rr ,u-,V-nlane damping of rigid

motions and vibration suppression.
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Table I. Stability Characteristics for Diffcrcnt Control Gains

R CL K S K E, .K, Stability

1 6.938 5.875 6.114 2.722 3.912 4.917 unstable

2 5.456 4.841 6.034 1.637 2.455 4.377 stable

5 4.296 4.059 5.984 0.583 1.058 3.81 1 stable

10 3.812 3.742 5.967 0.012 0.304 3.478 stable

20 3.536 3.565 5.959 -0.405 -0.249 3.217 stable

30 3.437 3.503 5.956 -0.591 -0.499 3.095 unstable

where Q = i jt

Table 2. Control Gains

KC K9  K"I K 2  K K , K3, K , , K ,C n 2

Fig. oi. 0 0 0 0 6 0 0 0 0 3.46

Fig. 61-. 5.46 4.34 0 0 6.03 1.64 2.46 0 0 4.38

Fig. c. 9.19 7.50 59 2 119 r,.27 4.13 5 X5 -0.22 -0.09 5.63
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Fig. 3. Tethered Antenna; Reflector System
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Fig. 4. Coordinate Systems

28



h (km)
0.1

h > h stable

h < h unstable

0.08 -

0.06-\, 0,06+ h (ouc-of-plane)

h (in-plane.)

m 10000 kg0 0 4 ,.-7 p

mtm 8.35k

1 Z I ,

2 4 6 8 t0

Fig. 5. Stability Regions ror In-Planc ,i ( C)tlt-41'-PIrnc \otion
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Fig. 6a. Transient Responses for RUPP" Control 1.:w
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Fig. 6b. Transient Responses for Rigid Tctllc-r mloioi Optimal Control Law
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Fig. 6c. Transient Responscs for Flcxiblc Tether ,o(lel Optimal Control Law
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3. REV3IEW OF THE CONTROL OF TETHERED SATELLITE SYSTEMS

71 his *cater reviews the steps in,- tne development of

27ontrol laws for Shuittle/'Platform-Tet-here-d Subsatellite

systems. T he tethIered su,.bsatellite systems have been

proposed for numerous app-11cations. ThIs hias led to many

~~nsdealing with, the dynamics an-.d co-ntrol- of such

systems during their deployment, station k eePing, and

r-etrieval. XA brief comparison of control laws used by

various investigators is described iee n Dirder, to eLvaluate

different :zn '' -i_ ho:ds frtethe-red subsatell_,-ite systems.

Finally, rec:ommenidati'ons are made as no thle sui7abilitJ

o-f thie different con-trol laws for adaptation w~ith the

propo~sed orbiting tethe,_ed ref-lector s~e~

3.1 Deployment

Shuttle ~ ~ -'Pafc- t istanc e as much as -100'Km m the

,31u t -I P Ia f orm. Snce most o)f the usefui t,,ia6s.on

Cc~it'Sstart after dzeo-lovment Of thea subsatellite, it is

israblin to ieploy thne s1_bsatellite '(3 the >oefrati'onal

in ~ 2 ~ssot S. sm as to ble.-

e - "M en -an1 . e, c a::ied ueihr .:2. a paissive

as ~ ~ ~ 1 su:e e y an e -ad i. ino and de:Fcribed i

or ",I.hth e;of..:iv ot S: 1'IJar t:- that

* .:p ~jj] T>e :.9s.ve r e'~~_ 2:>~i--d by,

.:3 L! t i. e..- - .

- t~fl~c f~el;. e:)>t.: aylad
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mass, ms5, attached to one end of the tetlier is ejected from

th'-e Shuttle and performs a free flight untJ-: the tether

be--omes taut at wh.-ch time the payload is subjected to

Ilnp' JIse affecting temotionl. ILmp-acts and free 4fk:ght occur

al~rntelyuntj e-cugi enrgy '.-as been d-issipated dur-1ing

ilp. acts so that no -further ones occur. T',he tether then

beco-mesz permanently tau,,t and the system be'.aves l ike a

spherical pendulum. if sc~ne viscus damping is L:vtid.i.,

th pru 1 ~settles alo-ng the local vert.>:al . Whether

2eployment in sh11desired d irez-c t ion iupwqa r, Dr d o-wniw a r d

:c,,rs :.r2 noDt , t hE du r a ton o.f: dIe ploym e --t d e pends oni th e

4,n-tia' e-c ion velo)cityr.

Deployment is orlieyto be carried outC USing-: anl

a: t J- ~ to 3ssem to curate dequate dynamic

0 e rf! DIa!ce . R u Pp 103 firs3t :ii a 'e a P re 1 1111arL7 t r!= itmol)en1t of

he nmz'o th; "Iule-Teh er ed -S3us a e 11e syvs t em i n

-~~nth-e rmotion is as: dto c~ ;,11 1:'h-n teorlit'al

clan,_: and tttei- ma.:ss: is negl ezt'ed, -and :et ut a tQensio(n

*:onrollaw In the form

T =KiL F_ i- (82)

L 3.:-e ,d L are i:,stanT neouv lenot an' nt rate,

-' rs ang-d se uitil the

aw ri_. 1 tn e r:-.s'" en t:er tescn, rate
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tlonal contact with the tether. The tension can be measured

by a spring damper arrangement on the same pulley. The

measurements are fed into a computer which calculates the

required torque that must be produced by the motor driving

the tether reel system.

In the dynamic simulation using Ea. ilI) Rupp [10] used

K2 = K_-3,msw- while two values of Kj(S .n! and 7msw 2 ) were

chtosen. [w is the assumed (circular) orbital frequency of

the Shuttle orbit. ] The coefficient, C1 , was used to

-ritically damp the longitudinal stretching oscillations.

The control law was quite effective in damping in-plane

- du-ing deployment, but, for out-of-plane motion was

not cons-dered.

Eiker et al. -12] treated the three dimensonal dynamics

and control including the inertial effect of the tether

mass, aerody:namic heating, and a-rodynamic coces an the

tether and -usatelllte. The fcrm cf the,: contr)! law used

was the same as in Rupp [10] with tie except-3:n mdifi-

att-n of the c,:mmanded length for desired deployment and

re rie.al maneuvers. Th-e modified tension llw was iin the

fmrm as f+tcws:

T = 'F--2 w- L - L.-FP L-?Aw L.- (83 ,

w,; -er e ma- M-- a- e, mess f s+satelita and ter,

-~.t:.c.-.= R i- -h ratiz "etwee- -he c ntrzi law stretc-

"b r q,: ',- a ,c: I Z' - :ne 7 c :t l law
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damping ratio. A :,ommanded length of the form

LC = KIL + K-. ( 84)

was suggested.

The zombinatioDns of exponential. and uniform rates of

czance of length can be expressed in the form

Li exp (ct) Li< Tr <

-Z Li (l-'-ct) La. LC < L 85)

L, L-2-L 1 e:xp (-7t) L-.< Lf -

where c is a po)sitive constant, Li and .f are tn-itj.3l and

fallengthis, respectively, while L, and L, are two

intemedatelengthis.

Eeployitent is bas:ic-ally a stable operati~n [Baker et

I'J;however, to3wards the end Of depic*Yme nt, when

aerc-ndyr.armic effects iteconme important bocunded Ste:_ady' inplane

rotatlonl'J. and eJiastic osc-111ati-o.n may result. In addition.

it-: -c~n~rot atI :ns an~d vibrations _c cu: for)- eczelatr ic

c'~is~n mdto, the ec',-atof-ial P.;ie. Thi--s .oindoes

no: avseany~er~us roclm an-d can bCe eiminat-d once

thie dlywetis comp-ited.

.alohanel. al. 1131 is1ked a fini-te el-ment ~oointc

a _'S -_, mahall-tIc al .Tre. of tiwSuti-'thrd

ThS:.aeL~e~. temn'i2 ilc 1.1d.st'_:4 ~~sefes
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Lc tl+KTX] (86)

where K and X are gains and state vectors, respectively.

S7+ubsequently, Balnum and Kumar [15] first developed an

optimal control law based on an application of the linear

regulator problem, with control provided only by modulating

the tension level as a funct on of the difference between

the actual and commanded length (E = L,/L -1), actual length

-ate (&-'), inplane tether line swing angle, a, and its rate

, ,2

E- +' K F- ' +TKa' ; T a T, s To

The system was idealized as two point masses connected by a

massless .. nextens ible tet-r with the system .noving in a

nearly-circular orbit. The dynamic effects of orbital

eccentricity and the earth's oblateness were neglected.

la the dynamic siwulation 'ising Eq. (8:7) Bdin.iWm and

Kumar used a commanded i-ngti, L: e:ponentially increasing

t tme as in Kalagnan et a!. [13]. withi suitable modifi-

-at1cn f,- the de-loyment 1.e.

L - - t  88)

where is a ccsitiec-,onstant. .ith -I- is commanded lerngth

;used in c_-,1n- tao - wi-h the (:qiiMa- feedta.-] gains, deploy-

.... +r-uaes a m:-dera _:e du-ftin -Ie and ha" -etter

1-11-nc c. -zr e Z :E s wIl .. S C.-i 7 _ar g- tn is reslilt with:

-. a -- i. sel B: ' - . j[I and AC [Kaihan et a. I

13' . v+ S- i ,ie.D -1, 4: si . at:o .n -.,h41 t eodyn amic

, -.- f-Kla.:e mn :.z:;..~ ._ , appr ::ina-- h-1r. to,
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using Ri-pp's [10] law with atmospheric effects included

required approximately 10 hr. , to deploy the subsatellite to 100 km.

3.2 Stationkeeping

This task involves the maintenance of the subsatellite

in the desired equilibrium configuration. For the present

po-opcseu aerodynamic test mission, the desired equilibrium

configuration involve!. . a subsateilite deployed !)0 km below

or above] the S:-uttle Orbiter (Shuttle Orbiter altitude -

220 km) alonc the local vertica. Tnder the influence of

...... a d:-tu--banc7:s. the susatellite deviates from this

desired posi-ion.

zainum and 'Kumar L151 .sed optimal control law thecry to

::!ves~i gate station %eeping for the Shuttle Tethered Sub-

satellite sys-em. The sy-tem response to various initial

"_ ill te..... ex:ernal disturbIng ffrces absent

,;as stdLed Typrcal e-.ts showed that the t me ccnstant

- -r e.. >s- "a'pec: m e ,-irespn-dnig to th- oF';imal gains

).3 rbit) was shorte- -han -ose associa-ed with Rupp's

.w . 5.E r~-s . in- lane -uv__" .- Rupp s control law,

-
_ lengqth .nd le-gth :-te ga._ns w:--e se.. ected for in-plane

r, :t-_--! -e .- :ntr :1 based -n t-h -.  sy e na r ai fre-

-1 r -,ie ni-t ..... .. cut-: f-p -ne m.:c ds . . pec-

-iv ] > . . .=... c_-A-a;:" wI~h -:j!mal conlt r>.......v th e

- ! . -.- ro! a s were sale: te .:rde to :niI:n ze

X : . - T : -- R U -1, 8 9 )

0
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U =-(R-lBTp)X =-KX 90)

The system response with lower overshoots, shorter settling

:imes, and with comparable power and tension levels was

)btained by applyin.1g modern control theory. Maximum tensile

accelerat:.on f:<r thiis case was C.525 m1/secC for the optimal

control and 0.505 r/sec2 for Rupp's [1O1 .-n-planle tin-ing

control .

When the effect of atmosphere on the t ether was

ccns a4nered w--th Pupp's (1O] conltrol], the system-ir response had

less dampi-ng than with the optimal control. This reflected

-,he greater stiffnE:_;-S s in the? cptimally co:ntrolle_-d system .

Also, P.'app' S cont-rolI had a tendency ton pulil ther sub-satellite--r

to a higher altitude, uniethe optimal control which had a

tend-ency to deploy the subsa :ellite? furthe1-r --ntc t~ne atmo-

.:ohlere. t 1;s -j idn t t ha t th' e- co nt rol law b a:2ed :: 1 t he

.-near rgltrthe7-ory riisult,7ed in suep erfUman(:e

whe-:_n .:-med o Ruprps c ntrol law --n theii station keeping

.flod?.

ten tne pre--icus wrk-, w-;s la ;er x e toaft- -

We herd Susa~lltesystems b37y Ean , W-oda-d ~

.r'an- [ 4,, where a -- ,imen!m 'on ma :hm ca :eoe r

P vi T-, a ynmcS Df a~z 71D frM-

re~ rc:- S ub s a t IIi t e v S wa. tsa- enr d was
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pitch angle, respectively, were,

TL K~ E: + K ,E' + K at + K a'o + K e + K ,' (91)
E:E E : Ea v £:0a V 6V 68v

K KE+ K F_ £+ K a + K a I + K 6  + K ,' (92)

where E£ L/, - I,£ e a. = 0-, , 6=8e a

and K's are State variables and gains, respectively. The

angle, 6, describtes the orientation of the platform with

respect to the lral'ertical and the angle, a . represents

the dluarisplacemen-s of: the tether1 line relative to a

loDcal normal in the_ platfDrm, Lc. is the nom.Tlinal r-eference

l--17th, = d the subscrapt "eq'f refers to equilibrium

-Ialues.

The numerical resul-_s showed that te thaer l__ne sw,-ng

mol::or. was dampef., requiri;ng about 1 . 75 hr to reach- the

nominal value, wh2ereas the- platform rcitch moinwas damped

:out withnn apprc.:.imatelv 1 .0 hr when cofresponding feedbac-k

7aiis and init7ial oonditions were dete-rmined.

:tw:sorve t:Iat: (Iwithin the linear ,:anc;- the

Ssst em i s cont r -.llIabl1e w iti -,omentum-I:-ape coDntroi on the

platform a-.nd ~hte~ m-411 -ti n in the tether line;.(

theL- Linear- S-Yster, is observable with ete lenjzh and

lengt- ra-_e nesreDnt nly; (U3 -te tethe- r a tt ach ment

Z- 1-..- t d..,er m de. bl.t

a t the05 of a~l lre Y 1, i:r'. fo:"r e 1I p. tu dei-S

Cotn:.; a ''~ n Eit: 5 a 2-

do.~ensi:np z:h-a: n1 -e .: th doe _zc ooI' C)P

~7 z-
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and used the same fcrm of the control law as in Ref. [15].

It was assumed that the control could be realized

through appropriate modulation of the tension in the tether

line and the mcmen-um type controller for the platform

pitch, roll and yaw rotation, i.e.

TLK + K 6 + K + KE' + K "- + K a.,' 92)
E c: y EaV cc 66:6v eaIv

T KK+ K v v +Kc + £' + K 'K + ' (93)

( in-plane )
e' !_ eev 8!VOE e

-= : K + K + Ky+ K, + K + Kyy 94

T = K $ + K A) + Ky + K W + K W '+ K yy' 95

(out-cf-plane)

where the angles 0 $, , and O $', $ are platfo--m pitci,

roll and yaw angles and thei- rates, respectively, a' ,y ,y'

ere tether li7ne _n-plane and out-of-plane swing angles and

a::gular rates, respectively.

The n.:mer-az results sho-.wed that the platform pitch

angle and tether line swing angl damped, both requiring

ac:.t .5 hr for the initi al conditions selected. For Out-

:f-plane motion the platform roll and yaw angles, and the

e:;-.e i7-e .w n- ange damped requ ring about . 5 hr, 3 hr

and .5 hr: respectively.

F- r t1he c.s e where the ttthCr ...... ent ,oInt )ffset
wa. tk1i," bc- t- ll..i >: sw~.:- .... o :h rol a: it was ver-lfied that bothth

_n-p ane out-of-pl-.ne sub ate l_ l -vstem ar-

Is _ . t. .. n: d mouatin on the tether and

'iert tz o :on...,: _-_= a .abl.. ,3:h 1 basby1m are

. - .. . ? .cth -f -h= tthe1. 7-> the f:latf .M
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rotation angles together with their rates are available.

The tether attachment point offset, which is the source

cf the system's natural coupiing, is 3n important factor in

establishing system controllability and observability. For

the case of no attachment offset, the rczation of the

platform will not affect the subsatellite cut-of-plane

swing; in other words, the effect of higher order terms

sh-u, be considered, or other means of control, such as by

placing an actuator on the subsatellite to control the

tethe i1e cit-of-plane swing, should be augmented.

The :_nvestigati-n of the effect of tether flexibility

or in-plan -) ;tab-Ility regions as a fuinction of the

-ether tension control parameters during tne station keeping

was further developed by Liu Liangdong and Bainum [8 ] where

3n ai:ernate optimal control stra7egy which included

addtzonal fedback Df th: first viorational mode and its

r ete was introduced. The formilation -f t.ensi,-n level

control was 111 the form

T = - (K c + K ,,' + K a + Kl ,, +Kn +Kn+)K (96)

where n lir tlhe forst f lexible modal amplltude (non-

LmesiInal; ste variable and its rate_ respectively. ?he

e.;:--roah- usg cnl'" tet'her tension control and

.so 5er abLe wLit' the m-ot re ent i s, E (YI , or only

,-n the throuZh esZmatzon or by

1- - .--- 2

.. . .. ;. to :n uuerc :a!. cu.. ar:5:- :f -:-h...e ' ""... t':]s elt
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responses it was seen that Rupp's control law could be used

to control the the in-plane swing angle succe--f 1 'i.. during

z;tat_cn keeping but it was not very effective for damping

the in-plane vibrations. The transient responses for Bainum

ant Kuar's 115' optimal law based on ,E' (x, a' were

faster than those for P.xpp~s 101 contrcl law. The further

m.ove .ment z :-n transient response in bo-h -he in-plane

swing angle± and the first vibrarion modal amplitude were
b nciuding t e stat feedback of the first

v2b.rational mcde into the optimal control law. An impove-

melt w3S al-o apparent In the damping of thle second mode due

to the coupling between the first and second modes.

3.3 Retrieval

The retrieval is basically an unstable orocedure.

P_~tri-al .an .e care-ed :ut by letting tn commanded

length, .edIiic wi-lh tl.e. c can c decreased in steps

R.. j1- Dr it .::an be an -exon-_e__al decre S g dontciuous

n -Df tiJme, such as
L, -t,'p .97)

:n elher case.. the rot.tiona1 as well as vibrational

,-ii- ar-b :.n the absence of -ctive ccntrol,

a - . ..,png i"tc , - d rinj r-etrieval is

'.p~~i : ! -to LI a nd, on pradio =,.. ampino le...l

req red-) g'.iantee st~hllity is: iw :-s avaolab>.

= 10 and =. E&:er _ -.. I2j e+-: r ,-.nso,-:

-.... , w:--e n-ed ire-. dL " . b.t - _',- mp.L

"~ ~ -= - -" ' - r,: is d - -- ""i... "'':.: ..h - :, te i m .- i" d -

I 1c ,I a:: ; 2 r 9 Jc:.e n d
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45 , respectively, resulted, depe2nding on the initial

With-K1..mars 715] Dptimal ccntrol strategy

rorre z~ealthe i-PlanE e :s is bet-ter than that

ODba ntl- d~ by Ba ker et a>, [121 hicweve r, o'l - - mc :nt ion

To restr-ict fyot-of-lane Dscillat-o-ns -:) reaso)nable

roos ziercontrol' Itrateg-s niiis- be use-d. Xu e t

aL.{16] showed t;at a .satisfactory Iengtn rt a so

K El + K IC:1 + K "(, 2  ]981

w ' K a ai-d K, aire- negative ccrns:ta:.ts K eis a .oecgar:ive

func-tion Df the tr.i.: anomaly e. a is tne i:n-plane tet-her

swIng an-.gle, and-- y the- out-of-plane tetlier swing angle.

vcvj J et a I. 17]1 ,nsiaq-red some ns::iec (cntrolD

stseoswot.1 a tenis io-n control- law of th or,

T KLL + KL, L' + K + T -\9

-~~ n -, c no ttso otr o law o- -was evid-nt that-

ap 1i - d e- tha" Dut- -- pline swing anjl- -,;u-" d

{18 i a orl

a n an
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a:n.d desired final condition together with a cost function

that penalizes in-plane and out-of-plane deviations of the

.ction and. uses the commanded tether length as the means of

control.

It ,s sought tc. minimize a cost function i

tf

J= [x(tf),tf] + t  { L[x(t),(t),t]}dt (100

by apprcpriat i choice of the scalar control, u(t), where t o

ann -f are given. t (f),zf] is the terminal cost and

LLr..,: "'-t is the Lagrangian. These are most common of

the quadratic forms:

Z -01f;x t) f] l, f  i

7 (t) , t] = Z >Xi t) + P i1 2 (t) 102

wi-ere Wj, Qj and R are weighting factors that indicate the

... oztance of minimizing t e associated state conponent, xi,

z cntrol, u, an ::d Is a desired final state such as the

final les-red tetl-er length. With the ipleiventation of a

-'=-Z ,rde c:-.,-ugate gradlent method the optimal L control

was obtained. Te numerical simulation -esults showed that

y .:ale *s--atzof _t. t and control weightings the

711,Dt~na nt~ pn -Cl be sgn7 ficdntl -dce e, and in-

ee more re~dily attenuated than those

f-r tIhe ottt-of-pI ne mo._cn.

- o.,cdl was not Zc1nSzierei ±n this

- .. ' < - a' t k .. a c l !s ,n :: ] '. d i i - e .. . ni s v e r .s e :n :: t o n l o f th le

.- .e - - .- , . eccentricitv
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of "-he orbit.

In order tc furthear improve the performance of the

.ys' ern- zn additio-nal nonlinear tension control law was

2.--trodl ced by Liul Llangdcrng and Bainum 8] which is of the

4o:

T ms- r-nt )CA - F, .- FAL-FK2 AL' + L (FK 3 a

+ F 4 y 2 + 5 2K (103)

wner"e: ms,-nt are the mass of subsatellite and tether,

r*_ spect~vely; w is the orbital frequency; AL and AL' are

the-- b~frn e ewee n the tether length and some reference

Length a---' its rate',; th-e angles a , y,a,y' -are te-ther in-

P- a~anoc:c-zae swing an;les and angular rates,

;cespect-ively; and F::j are optizlal contro.' law gaiLns.

_ wa.q dif ficult to use Strictly analytCical

m~:o~ to~---, on7:r- i calns -for such- nonl inear

eq~~tou, hecoszt f:tonwas select-d is

T f
- *.-y~-,c:1T~104)

0 0 t/

T f

j, rf 1 05-
0

- ~ .- -106,,

~mee z~nd z n :7 ' r -oeai L :me, tlie

:.sfE!:: 1. -,, ' am i td) st+at-e vrals n

:7 1- 1:L,4 I V Y . D czr di.n g tD h e
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compared with Rupp's [10] control law, and the transient

responses were also better than those based on the control

law in Ref. [17].

The tension control is unreliable during the terminal

stage of retrieval when the tensi~on becomes very small

because of the small- length o-f the tether. Tie tension

m.nigh-t even become zero (slack tether) due to the longitu-

final Dscillati-ons. To overcome this difficulty Eanerjee

and Kane [19 3 Pr-oposed that natural tether tension could be

augme-nted with s stellite-based, tethl-er-aligned thrusters and

t.iat these_ thru,,sters would be ca:table of staoii 7ing and

sceedin- up tn-e retrleval process. TIhe ;hruser agmented

torque zontrol was Df -he fom

T.-T- 0 = K ccc K Cc ' + K Yy + K Yy' (1.07)

where T,~ is the.z tofque proportional to ot' and y'

A. summary oDf t'le control l-aw.s ise-d by the vriu

on vest i qat ton:: is given in Table, 3

3.4 Recommendation Remarks

c) a,,,, e mr s t D f t he us e f ul mi ss icn s a re- ca ned ou t

durin statlc keer-ing p:,as -For Shuttle/Platform

aw4S se o cus-74 "ali t d sta-tion

s' r. a 'en t Ae fi rst

e~::et "~- -K: zyf e

47



augmentation of the tether tension control), it may still be

difficult to implement an efficient and successful retrieval

for the tethered reflector system.

(:) For deployment, the active tension modulation schemes

proposed by pRuppU0] and subsequent investigators are more

efficient than the purely passive scheme advocated by Kane

and Levinson.

(21 Out of the various active c,,:ntrol laws for proposed

o-rbiting tethered' reflector systems, Rupp's [101 control law

is the? most basic and is effective in controlling in-plane

motion, but not adequate for out-of-plane motion control.

(,e K,;ssel *s Bake=r et al. ] [12] tension control law, based

on a 3ombination ofI ex-ponential and uniform r-ate of tether

length, as a co mmanded length rate can be used both Eor in-

plane and ou-,t-of-plane motion con--rol during deployment. it

was seen-. 'Ilat the dur-ationa of time f~r In-pialle deployment

was reduced as c:Dmpare wit-1 that in Pupp [10] , and damping

cha~cteisto~for both tecas~e of statioDn ;h-eeping and

leploy-nent were better th-an th-ose for Ripp.

'5Ba-i-lum and Kiurar' s [15] :control law based iipon the

'naar reglu ator pr_-oblem of optiniaal _ontrolI the,:ory i s

a.-- hl e, f:r a z a t I -i i th r 17 :e*p Ste -TI e r ed

stems , .or e s ec lfca"l~

-D -atLzn :eelpng purposes at alttuie ,.4-~*lere

~csper~eff~ts~rene~lg~be, o.~r -laws resul:_ in

-.- ~'' ~ se ::::~o ~~'''aton ;as

=~ ~ aLe~;Lt r ~i~ e Ipe - lCe:.'i z ?.§
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Kissel's]. The tether tension and power levels required for

such control do not exceed previous requirements (for the

TSS system"..

For steady state station keeping requirements where

atmospheric effects and eccentricity may be important, the

optimal control law with gains based on optimal ccntro.

theory can be used to bring the system to an in-plane

equlibrium position and tension level which reflects a

balance between the gravity-gradient and aerodynamics

torques (forces).

For moderate duration deployment the same form of the

opt:im a law, where the actual gains are adapted continuously

to the commanded length, can result in improved damping

,settling) characteristics with small amplitude initial

exursions in the in-plane swing angie.

The same form of the optimal control law as that in [15]

:anm be used extensively i1 both 2-dimensional dynamic models

L3ainum and Woodard] [41 and 3-dimensioni dynamic models

:!an Ruying and Bainumj[5 1 , of the Platform-Tethered-Sub-

._atelite systems during statil-nkeeping.

() When, considering tet:.er mass, tether flexibility, aero-

;::7fmic c -Y:e Dn' he tether, and eccen-.rtcty ... he- orbit,

i.e. a more complex dynamic model for tethered systems, Li.
L!axg.d.c rjnd Balmu,' .ern ate optimal co4t1o: law mace

frthe- IJ-Povem .nts n the trans tent respo:.se of beth the

- --.....- .. --.- i - - [17 '

. - -11 s'."n - -I: as 1 : a1. s
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To sum up, control laws based upon optimal control

theory offer the greatest potential for applications

involving proposed orbiting tethered reflector systems.
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4. NONLINEAR DYNAMIC EQUATIONS OF .\ 'FTIERE1)
ANTENNA/REFLECTOR IN 01R13IT

4. 1 Introduction

The linearized equations of the orbiting tethered antenna system have been ob.

tained in Chap. II, and active tether control laws (l.R) bned on the linear model have

been efficiently used to apply active control during stationkeeping of the system.

However, for the deployment abd retrieval, the linear qvstemi' model may not represent

the physical situation accurately any more and the active control laws based on this

model certainly may not be as effective during deployment :md retrieval as during

stationkeeping. This is due to the large slewing angles and inherent instability of the out-

of-plane motion of the tether. Furthermore, second order wvrnv' in length rate are

directly coupled with out-of-plane modal arnplitudc terns. I lence to damp the out-of-

plane motion using length rate control ( tension control t :and to simulate the dynamic

behavior of the system during the deployment and retrieval. it i: necessary to use the

nonlinear equations.

The general dynamics of a tethered system is rnhei cmnplex and hence, earl,

dynamical models were based on a number of simllfving ;:,n:,iviplions. An overview of

the development in this area, particuraly system modek an(l proposed control laws, has

been given by Misra and Nlodi 114) and Bainutm ail( Kini - 15. The system models

have grown from initial massless idealized tether nmoick ,o ,imiplex represenltations en-

compassing all the tether vibrations ( flexibility ) and end hod\ mo ions, as exemplied in

the model by Misra arid Modi f 14).

As for the iethered antenna/reflector ,ltem ihe 1-11)0;,iional motions of the

subsatellite and transverse vibrations of the tellier will Mafc'l 1))c I Ifid bod y molion of tlhe

orbiting antenna; therefore, all these effects will he in(l1eC' inl 'he for'mulatIonl of the
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nonlinear system equations for the further study of zirnulatir tile system dynamic be

havior and applying active control during the deploymcnt and retrieval.

4.2 The Assumptions

The following assumptions are made to develop the model equations:

a). The antenna mass is far greater than that of the tether and the subsatellite;

consequently, the center of mass of tile systen may he taken to coincide with

that of the antenna.

b). The tether is assumed uniform with a conqtan' m11ass per length.

c). Longitudinal stretching is not considered , and l,,ntitudinal vibration is

neglected compared with the transverse vihrar oin.

d). The shell is considered to be a rigid body.

e). The subsatellite is considered to be a point inw ,.

f). No random inputs or unknown disturbances are considered.

g). Only first order gravity-gradient effects are considered and the orbit is

assumed circular.

4.3 Kinematics of the System

The coordinate systems used in the development of the zvstcnI equations of motion

are shown in Fig. 7. Opt Xo Yo Z. is an orbit-reference cetitered at the center of mass of

the shell, Or, , with Or X. along the local vertical 0, ',, along the orbital angular

velocity direction, Or, Z0 along the orbital tangent vlocif\ direclion.

Or, XrYr Z is a shell body reference frame, Rr . - hert, Or X, , 01,Yr , Or, Zr are

principal axes of the shell. OXt Y, Z, is the suhsatell te ndeforined tether reference

frame, R, , with OX, along the undeformed tether line. ,lice () is the point from which

the tether is deploying or retrieving. The coordinale (o1 () i-1 the ;hell frane are (h, 0,
0).

The Euler angles *i, 0, r5 are the yaw. pitch and roll :mnvles (if the shell, respec-
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tively. a, -t are pitch (in-plane) and yaw ( out-of-planet ;igles of the tether.

For convenience, the transverse vibrations of thie tethier are expanded in terms of a

set of admissible functions.

V=Z'I~n(X) Bn(t) W--Zd)n(X) Rn(t) (108)

where 4)N(x)=sin( n-rx/L) , v--out-of-plane displacemeii of thic tcler, w--in-plane

displacement.

Therefore, the whole system hias the following dtegree,; of freedom:

'if, 0, 4)--- rigid body motion of the shiell.

C , 'Y --- translational motion of thec sut'ratellile.

L --- length of the tether.

Bn. Cm --- transverse vibrations of thec flexible 'othier.

The transformation matrices from Or Xr Yr. /i to (); I(. N%, 4, and 0) Xt Y, Zt to

OP XP YP 4P are given by

'M -sill S 0C4+ Gif S4 StlsS1 + (r (T SkKrT) (109)

04 Qso Qb* sills (b - 01, SO S s- S'illCc! (Yr~ (1)J

=0 [ Cx~ x il
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Y[o = E + M, Y, (112)

where C-- cos, S -- sin

The angular velocity of the shell is given by

u-p = .,, + fl y jr + k v k, (1 13'
where

0 ,, C 0 C "r + + 0 S (1) + If. S- 11~q C 6: + C : 1!1 S b )

1 y 0 C d) --i C 0 S (1) 4 oc S !f S 0) S C C, C 1,) 114)

,fl= 4 i-it S 0 - uo, S 1r C 0

The angular velocity of the tetoer is given -,

cot = ,x iI + Wy jt + 0)7 kt 1 15)

WX= OcECy il x+ S-YQy - Sx y~ (",

Wy =- Cc S-yf2 .,+ C"!.iy - Sc(S-y 0 C, / 116)

Wz ='- S,.P, x + C , i, z +

4.4 Dynamic Equations of the System

4.4. 1 Rigid Body Molion of the Shell

The Euler-Newtonian method is used lo develop h', ' , i :ri ,ouatlior of (lie shell

motion.

The angular mon'entun ol th shel is giveln h,;

, 1- i , ir y jy ,r 1 77A 1, 1 I"

Thc time derivatike of th( N i. ,,rillen :1s

N', = [ k,, (L,-(*..-l,)f v ri,+ T[ l. y 4  1'-7h,, it<s+m 1i I . . 1. . ,( ,,l,,,)m,, v.,k,, (rg

There are two forces acting on the shell, ,n," i n , v , iiwwi l force, tihe other

teher tension force, "T. Therefore, the torque exer m,.' l 0- , l.,ll
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1, = LaG + LT (119)

where La is the gras itational torque and LT is the orque )I hie ler tension

force.

I, r =-hTsin~i co5sY jr + h'Vsi n-y k p (120)

Ifrere. we only considei first-order gravitatoionl foiccX I i, icll known thlat the

first-order gravitational force acting on any point P(x.' ./) m he diell can lie expressed

7]in the shell frame as:

2 2 2

3f U G5cP -1G -3 CnS61 G5 - SO (121)(W)[ 2 2 2 o][9

-3 SO C1) 0 3 SO0)Sh 1S'

H ence, the torqJue of the gra'.itational force

7 ~~3S 2 J [3 S6, I ](12
Lo f ry Xd W 212

I f~ ( I I ) U -S hI0 C( Io I i i.
Xv~~~~1 y 1,1 i. 1 3

I 9~- -(1 - U hS' 9 -Ob' I -

Acoh in t oar the nolear t arn icequa ion ' he1,i

4.4.2~ ~ ~~~~~~~~~' 2rnsa ,0nlN tino h n~sc vte n'2d~ i tc

The~~~~~~~~(T Saga~ prahi sdt e'lp(ic1k I'~n *atain fh rnl

4.on al onsatonal Mohtnm of he~cc- Sh v e ed 'IC~lo :111( te w kQ tic adpteta
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energy of the tether and the subsatellite.

A). KInetic Energy

The velocity of any point Q(x,y,z) on the lther i 1 te lie rolinwing form:

V=o + Wt × t + r, 124)

where

-Sc = yf2 +-yf- 1
h yl + .f 0+ (125)

Y

0 W -V

xr x] [j 3] 126)01
T-2  pfid -fpvd+pwr ' ,fp'Jr( 2

w re

T 22 2 )
A 

7

H~ence, the kinetic energy of the tether is given

T -2 F, =-x P (I dx + -  ( I lS x , , r . .. ' p i.Idx

L - . - . I._ (128)
+ f pv,..-(w xr )dx + f pv,, dx + 1 (w ×r, i.r d

where

-I) Q -+ ,~ - I hi +h+ - .+ ,I ) i . .1<,, 12 l / 1 0
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r [-xv ,<24 -"Wid
T -TfpF.dX,(I dx- 7  W, -xw -x w

m 2 2 2 2

n n

+ 72L LxL!) 13 wd w + C(0 c, E- R (C U) (10

T ~ f P( I V 1 2+ 1 2 'd

nir =znx oL'r

1} (131)

W 1~i 2 T-_

0

T f p K.( x T, dx V) livw

=mn a w sinax sinry !±L7 co~ q., 5+* 1
Tr fl x I I

h i+-IK r
-- f2 CdCOr -- + 11 Wl Cd -CO41 <11)(V C(ry

-- f X fls- -C 1+ 1

T z y nl 11 v 11 f

1 (0 q), -
1 -1 

I TY C w+1 (.

n n
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T 5 fpV. F dx- m 1 [ sincxsirry 2 -  C0 1"  +
Tr y n . 1 n Ch

sinasiny L (- ) B -Cog -L ) + (- I  (133)

+m h hl(l- " L{ I+-I
n n1

m hn
T = I P ( , X T, ) 1, dx = ot , ) ' dx

m m L "

- ~ (B. C. - C. B3 ) w + -- L [XLC + Lti)c 1
n . , I y

mL '-3 +L(~X1i (134)-- - [ 13r + 2 -L )Z' f3r ,

The velocity of the suhsatellite

V = fly s ] + h Q [1 [ }[fl (135)

[fence, the kinetic energy of the subsatellite

'F - 1 2 2 2 2 .2
T=--2-- m [h f0 +h 1 s_ , , 21 ':in (Y cos"y2TY y

(136)

+ 2hsin-y Q 1,+- 2hli ( cos ( i + sin1, '(x :in-./ . y l U ,
7 y y

B). Elastic Potential Energy of the Fether

Suppose the tether is an 'ulc:-i13erboui heam l hercwv, 1Che elastic potential

energy is of the foll" ing form:
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E= El ( v2  + w2  ) dx - - X( l, , C,, ) (137). xx 41,'

C). First-order Gravity Gradient Field

Since the origin of the orbital reference frame nove, ilong a free-fall trajectory,

the only gravitational forces acting on the subsystem arie frin [he gravity-gradient field.

The gravity-gradient force terms are obtained by a '1vlr-,e:ie, expansion of the gravity

field about the free-fall trajectory. The first-order termi o I 1hi, series are well known.

Since Bn / L <C 1 , C, / L < I , the effect of tile ransvevrse ,ibration of the tether on

the gravity force is neglected. Applying these terms Io n 1a,1,' paIrIicle of si7e din results in

the following:

dF 2 J x dm
xC

dF =- 2 y dm 1 138)y c

dF -w 2 z dm
z C

where ( x, y, z ) are the coordinates of the particle di in lt orht al reference frame, Ok

is the orbital angular velocity.

Summing up the forces over all mass particles of Ilic tvvnan.;al Cvwtcm yields the first-or

der gravity-gradient terms as:

I1  
2 2 2 2

Q = 3 (-3 -n I IW2 12 So CxCy (SO-- (fl (') (,{'Th T) (l!!, +
SC

.SatSyCyG)S4G b + CaSy Cy/S (J) S,',j - i )o,2 h1 I

2 2

S xGy ( 3 C) Cb-1)+ 3 CcxCy SO CT) U) 1 (139)
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m 2 2 2 2 2Q . 3 -3 - m ff [ S C a .% -C ' ) + v - Q x S 2 -y S O C D C A, +

SaC2"yso0)tSd-CaC2 SdCf'bJ- (--- .in I,)hliCaSy( 3 c1~G-1)

2

+ 3 C 9co S6 Gb- 3 Sa S.y SO C 05] (140)

m 2 2 2 2 2 2 2 2 2 2

= (------+ m ) CL[ C y ( 3 0) Gb- -y ) +Sa y ( 3S0 - 1

2 2

- 6 Sa CaCy So0 C9 Q_+ 6 Sax Sy CySo C0 S'h- 6 (l'y * (;V i (Th (141)

2 2 2

+(m+m, 2 h[orG ( 3b -I)-3Sy (J)(, -3 SaCy So0C )

Since the antenna mass is far greater than that , he ther and subsatellite, it is

assumed that the Euler angles of rigid body motions (I 'lhe a'Iellite and their rates, the

vibrating mode shape and their rates are small ( first order terms ). ihat is, AiY, 0, e5, a.,,ly,1

B n, C ., 30 , C n 1 . Omitting the third order terms mid above, we obtain the

following dynamical equations:
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In plane motion

mt mL
-~+ m )L 2 coqa sirry co-y + ---I-- coq- co,,2-y Y 13

+ +m m! Lcosy +m ) + + m )hL, coq- coqy it

m m L

m 2 2 m tL (q
+( -- !-+ m,)L cosy (x + --- sinc~x Z-- t1.sC 2CL

Trn T n n

+ m !( oym! m )L! s i c~ Co."f co~Iv

m tm L
+ m ) L'sinoc sirry cogy + cowx qhy Y - C

m
~sinxcosy ZL~ ndBn)~f + ( y+ in, ) I! coq2cx c:,qy

m mr 2
+ + mn )W-. coqc cosy I12+ [ I-g - ii) )I Ic cosy

m- 2O( EmLLL-Cj- n 2c" iy o.-

m L In 2
coga cosa-y 13 2L a fl£ + j(---+ 2 C0_.C ~ic aCORY

m 2 2

4- + m, )hLsincx cosy 1(2, + 2( -T-- + m )L,2 cwty ;iIy it

h+ m2

Trn 11
m ml1.

+--4 m )hL, cosi slary co--t-- -P -

fmh LtL-IL4' 3Y7- B I -f 21 (In in!,zi r r
TT nl n y

m L in, I CORIy i(

TI' - I ~y~ B ( + --- L-- co.yX 1 -

m 2 m
-[2 (---4 m )r.cwk- siry cnsy----c' Y - 11

+ t-o B~~- I Q. i + 21 + ii(i 1

In

(m, + m, )h coxx cosy I fiL 1 -2 (--i- +- in.)l 1,01icv ;jm~ Co' it 1
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+2(--f-- + m,)Lcor'y a L n n 22 ~-- n n ~c~ 3 yI

n n n

+(i Lr in- 2 m ' h* r £I 2
n' f n Ti' n

2mnL 22m , -h

2m rxL sir Z , + cm1. 2:-- 3(

2m 1L Cos si= -- r 41

Out-of-plane motion

in inn
-(--+ mn ) L2 sii + -I-cosK Cq I c I, + m )hli.osy fl

Tr n- I2

+( -31 + mMJ + --mL -sIrtry E --j c I I c
3Ti' n n .. n

In ml p i
B t-~1 2  

-C- '1. + i )I o coQ-y
Tr n n Tr n n~-

M 2 In
+ (--+ M,)hrL Co scosgy P + f(---%ill )>ryCfl5?y

+ ( n + mn )hL cosa siny------co,2yX -- f 3

mnh 2 m
+ -- Co Xos gy 1--'-- I 1jfl + -~-+ 11 I, iwyctnsQy

Ti. fl r y

+ (--+ in h~irxCs cogly + - cos2-y 2C

-n mL 2

Tr' n n y

2rm L c~r 2 ~ 1 n~2~

mLcosc i 3 2-y 2: 13 f2

Tr n

in mn
+ (--i- + mn )hLsinc[ cos'y fl -y + Ill HkfOIiry t.!

65



m + ~ml 1, -pt~f 1+ (- ,W siy oy& + --- cI I .2C Y -2 L.L
3Tr " n h 11 I n h

m tmI 
n

[-2 (--+ m. )L sina + --- I- cosi cogy _X 3 I.

T i fl n y + L

+[ ---- - - 2m13. f +__Irt

mt m 2+3-I
+ 2(--+ m,)L Ly - --- Z itLI 1'3+ (%yI-q2 ~ Li

+ s i my Q n rC(

Stretching equation

m 
P(n, + m. + T--2 -[siri Z IIIL iB - co- irny Z ilL:II

nif n n

+[ , m+ m, )h sirxx osy + -- 2-colry E ll ~ ---- I~ZI
fl Ti C.

+ ~( + cox + i C~yX qj±

Tr n nn

m ii m p n22
+ C ~ i --- !- !:!L 13  i i1 m )1, (co~ c()?y

2Ini£1 2m 2 rn
-~- co~x sirry co~ry Z L-T3+__snc oacq Q,4. 1 2(---+r)

Trm nn I 2m 211im+m

cogasinry cogy + (--i- + m. )h sirny - -- Icwc co.2y I --- in siiny Z 7T
Tr 11 Tr n1 n

Tr n

(m m
+ m )h sinot cogy + -I-sin 2o: sinl 2-y Z 11- B - Co'CQ cosy E 17'2C

+ _p~~o Z1 f2.117 - 4- il 1 il Inocxc-
Tr ni nlc~v± - r oac

+ 2 2m~~CS

m 2mn
+ [ t-p + m s i r s~( Sin 2f- --- I q in c wc2y 2: 1!

+ -3-h Ri co co~yl .L~ 13 - -- IcoqfmiTy 1 I
Tr n Ti i
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m 2 m i 2-[-9+ m,)L cosa+ (-+ m,) cosix cogy 2 ~-+ in )Lc a

m m i
__si ZB6C+m )1, -1+ 2(-,T i, )F~cosasiny cogy 0l

+I2(-m, + m ) Lsino: - -_m!~ Co y COYI-+- C 1
Tr n 1

m m i h
-2(--It-+ min)L cogsy +( -- ~+2m )hcoq- cov j -f--sinasinry

mL~cfhi L+ I

m 2m
+ [--+ m,)L sina sin2y - --- sncos2-y Z 11

TT n n

mi m h ii

- r Cos i y -~a [---cos B -t si-n-in)t coqy7-L-L '

-mh m -in +~ -InC1!Cf

-2.coqix 2: -Lt~~ 13 fl --- z .L+i1E1 ,I ±
nI f n Z_ TI. n n 1-4 11 n y

+~ ~ ~ =T- ogxC T+ 0

4.4.3 M/ode Equations of the Tether

The vibrating modes are coupled with (lhe othor dcgres (11 freedom. T'hey satisfy

the following equ;'.ions:

Out-of-plane mode

int. p 13 m. + h [1-(-Ip m .i

m L _ n m l'
W + ~2 2L w toC + j)+2C)

.r nl -~f x Tr fl X i v1

*------ ---------- xw 1 srx o- oiI -iIy +cs tsn- If1TT ll x y

*+sin acos-y -y i -sirry Y 11 )+P'~(Bi 13 -------- -Y +

41 L1

cosax i - sina: il 11, + --L _ _ t
21 n (145)
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In-plane mode

m . p qn .. mh [1-(-IP m rnIn L,(-,fn.
T_ +r n 2 ni ~ r ny

m 2 2L_ .II m, h [l-(-1J1

~~7~(CW+ w (-f B (j w ~ -I +---------------

(Sincxfl + sin acos-y~ w -siny w Q + sin (xsin -y~ wi u -cosy w

m_2 n~-(i + B, L+---- 0 (146)
iT n 21' 11

4.5 Conclusion

The nonlinear dynamical equations of the tetliejed anwenna system have been

obtained. We can see that all the degrees of freedom ;ire coupled in the equations. From

Eq. (142) and Eq. (143), it is seen that the in-plane and vit-ot-plane motions are

coupled through second-order, and also coupled Mih the flexibility of the tether. The

dynamical behavior of such a compiex system ( including allilude motions of the satellite

and flexibility of the tether ) has never been stu.died IIIfOre. Nie< ;Ztep Of our research will

concentrate on the simulation of the dynamnical lieha''ior of 'clvie ?lm during the deploy-

ment and retrieval.
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0 , z r

Xp

0 x

Fig. 7 Coordinate systems used in the developnmn! ,r mmlinear dynamic equations

O X Y Z orbital-fixed reference frame
p 0 0 0

SA
O X Y Z undeformed shell reference frame. R ., in mit vectors i kj

p p p p p p r

0 X Y Z subsatellite-undeformed lether fr:m'e. R e rI t ,ith unti vecors I
J t t
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Chapter 4

Some integrals used in this developmeri

L LL
(1) j v dx = I sin r dxx Bn dx =- -8--

o 0

L L .L_ P-
(2) f w dx - Z sin _1x_ Ch C II

0 0

L L [
(3) . xv dx fx Zsin -B dx - 1

0 0

L L 2 n
(4) J xw dx = x sin dx - - C

0 0

L
(5) fvwdx-- nI%

0

LL
(6) v2  dx L ?

(7) dx L- 2

0

(8) 1 Cor dx - 2 *

0 n'TT T
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5. CONCLUSIONS AND RECOMMENDATIONS

The system linear equations for the motion of a tethered

shallow spherical shell in orbit with its symmetry axis

nominally following the local vertical are developed. The

shell roll, yaw tether out-of-plane swing motion and elastic

vibrations are decoupled from the shell and tether in-plane

pitch motions and elastic vibrations. The neutral gravity

stability conditions for the special case of a constant

length rigid tether are given for in-plane motion and out-

of-plane motion. It is proved that the in-plane motion of

the system could be asymptotically stable based on Rupp's

tension control law, for a variable length tether. However,

the sytem simulation results indicate that the transient

responses can be improved significantly, especially for the

damping of the tether and shell pitch motion, by an optimal

feedback control law for the rigid variable length tether

model. It is also seen that the system could be unstable

when the effect of tether flexibility is included if the

control gains are not chosen carefully. The transient

responses for three different tension control laws are

compared during typical station keeping operations. The

transient responses can be further improved by including the

state feedback of the tether vibrational modes into the

optimal control law, especially for the damping of the

tether vibrations.
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Extensions to the present study could consider the effect of

the shell flexibility on the system stability and control

and some kind of active control could be introduced (in

eddition to tether tension control) to improve system

performance. Additional control will be required to provide

for out-of-plane damping of rigid motions and vibration

suppression.

Because most of the useful missions are carried out during

the station keeping phase for Shuttle/Platform Tethered

Subsatellite systems, a review of the various tether system

control laws has focused mainly on the deployment and

station keeping stages. Retrieval is less important than

the first two for tether reflector applications where it may

not be required to retrieve the tether (except possibly

before rapid maneuvering). Although some nonlinear control

laws were proposed (especially those which include thruster

augmentation of the tether tension control), it may still be

iifficult to implement an efficient and successful retrieval

for the tethered reflector system and further study is

suggested.

For deployment, the activ? tension modulation schemes

pofposed by Ruipp and imprcved by subsequent investigators

are more efficient than the purely passive scheme advocated

.y Kane and Levinson. A tension control law, based on a

:cmbination of exponential and uniform rate of tether
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length, as a commanded length rate can be used both for in-

plane and out-of-plane motion control during deployment.

Out of the various active control laws for proposed station

keeping of orbiting tethered reflector systems, Rupp's

control law is the most basic and is effective in

controlling in-plane motion, but not adequate for out-of-

plane motion control. Control laws based on optimal control

theory offer the greatest potential for applications

involving proposed orbiting tethered reflector systems.

Alternate tension modulation optimal control laws based on

both in-plane tether swing angle and vibrational state

information can result in further improvements as compared

with Rupp's control law.

For out-of-plane motion control during station keeping

a combination of tension modulation in the tether plus other

forms of control (such as the use of thrusters) will be

required.

Finally , a preliminary model of the nonlinear dynamics of

the orbiting tethered antenna/reflector system has been

developed based on Lagrangian formulation. The resulting

equations are highly coupled and for deployment represent a

set of non-autonomous differential equations. For this

model the shell was considered to be rigid, but the mass and

flexibility of the tether has been taken into account.

These equations will be used in the next phase of this

73



effort to simulate deployment dynamics and compare the

performance using different control strategies.
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